Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis.
نویسندگان
چکیده
The aristaless-related homeobox (ARX) gene has been implicated in a wide spectrum of disorders ranging from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of X-linked mental retardation without apparent brain abnormalities. To better understand its role in corticogenesis, we used in utero electroporation to knock down or overexpress ARX. We show here that targeted inhibition of ARX causes cortical progenitor cells to exit the cell cycle prematurely and impairs their migration toward the cortical plate. In contrast, ARX overexpression increases the length of the cell cycle. In addition, we report that RNA interference-mediated inactivation of ARX prevents cells from acquiring multipolar morphology in the subventricular and intermediate zones, resulting in decreased neuronal motility. In contrast, ARX overexpression appears to promote the development of tangentially oriented processes of cells in the subventricular and intermediate zones and affects radial migration of pyramidal neurons. We also demonstrate that the level of ARX expression is important for tangential migration of GABA-containing interneurons, because both inactivation and overexpression of the gene impair their migration from the ganglionic eminence. However, our data suggest that ARX is not directly involved in GABAergic cell fate specification. Overall, these results identify multiple and distinct cell-autonomous roles for ARX in corticogenesis.
منابع مشابه
Mutations in ARX Result in Several Defects Involving GABAergic Neurons
Genetic investigations of X-linked mental retardation have demonstrated the implication of ARX in a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities, but with associated features of dystonia and epilepsy. These investigations have in recent year...
متن کاملPost-transcriptional regulation in corticogenesis: how RNA-binding proteins help build the brain.
The cerebral cortex, the brain structure responsible for our higher cognitive functions, is built during embryonic development in a process called corticogenesis. During corticogenesis, neural stem cells generate distinct populations of progenitors and excitatory neurons. These new neurons migrate radially in the cortex, eventually forming neuronal layers and establishing synaptic connections w...
متن کاملCrucial roles of the Arp2/3 complex during mammalian corticogenesis
The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex - the unique actin nucleator that produces branched actin networks - ...
متن کاملMiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration
Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 22 شماره
صفحات -
تاریخ انتشار 2008